Families of Parsimonious Finite Mixtures of Regression Models
Finite mixtures of regression models offer a flexible framework for investigating heterogeneity in data with functional dependencies. These models can be conveniently used for unsupervised learning on data with clear regression relationships. We extend such models by imposing an eigen-decomposition on the multivariate error covariance matrix. By constraining parts of this decomposition, we obtain families of parsimonious mixtures of regressions and mixtures of regressions with concomitant variables. These families of models account for correlations between multiple responses. An expectation-maximization algorithm is presented for parameter estimation and performance is illustrated on simulated and real data.
READ FULL TEXT