Fast Neural Chinese Word Segmentation for Long Sentences

11/06/2018
by   Sufeng Duan, et al.
0

Rapidly developed neural models have achieved competitive performance in Chinese word segmentation (CWS) as their traditional counterparts. However, most of methods encounter the computational inefficiency especially for long sentences because of the increasing model complexity and slower decoders. This paper presents a simple neural segmenter which directly labels the gap existence between adjacent characters to alleviate the existing drawback. Our segmenter is fully end-to-end and capable of performing segmentation very fast. We also show a performance difference with different tag sets. The experiments show that our segmenter can provide comparable performance with state-of-the-art.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset