Feature Weaken: Vicinal Data Augmentation for Classification
Deep learning usually relies on training large-scale data samples to achieve better performance. However, over-fitting based on training data always remains a problem. Scholars have proposed various strategies, such as feature dropping and feature mixing, to improve the generalization continuously. For the same purpose, we subversively propose a novel training method, Feature Weaken, which can be regarded as a data augmentation method. Feature Weaken constructs the vicinal data distribution with the same cosine similarity for model training by weakening features of the original samples. In especially, Feature Weaken changes the spatial distribution of samples, adjusts sample boundaries, and reduces the gradient optimization value of back-propagation. This work can not only improve the classification performance and generalization of the model, but also stabilize the model training and accelerate the model convergence. We conduct extensive experiments on classical deep convolution neural models with five common image classification datasets and the Bert model with four common text classification datasets. Compared with the classical models or the generalization improvement methods, such as Dropout, Mixup, Cutout, and CutMix, Feature Weaken shows good compatibility and performance. We also use adversarial samples to perform the robustness experiments, and the results show that Feature Weaken is effective in improving the robustness of the model.
READ FULL TEXT