Federated Learning with Unreliable Clients: Performance Analysis and Mechanism Design

05/10/2021
by   Chuan Ma, et al.
7

Owing to the low communication costs and privacy-promoting capabilities, Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients. However, with the distributed architecture, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training. In this paper, we model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk. Specifically, we first investigate the impact on the models caused by unreliable clients by deriving a convergence upper bound on the loss function based on the gradient descent updates. Our theoretical bounds reveal that with a fixed amount of total computational resources, there exists an optimal number of local training iterations in terms of convergence performance. We further design a novel defensive mechanism, named deep neural network based secure aggregation (DeepSA). Our experimental results validate our theoretical analysis. In addition, the effectiveness of DeepSA is verified by comparing with other state-of-the-art defensive mechanisms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset