Ferrograph image classification
It has been challenging to identify ferrograph images with a small dataset and various scales of wear particle. A novel model is proposed in this study to cope with these challenging problems. For the problem of insufficient samples, we first proposed a data augmentation algorithm based on the permutation of image patches. Then, an auxiliary loss function of image patch permutation recognition was proposed to identify the image generated by the data augmentation algorithm. Moreover, we designed a feature extraction loss function to force the proposed model to extract more abundant features and to reduce redundant representations. As for the challenge of large change range of wear particle size, we proposed a multi-scale feature extraction block to obtain the multi-scale representations of wear particles. We carried out experiments on a ferrograph image dataset and a mini-CIFAR-10 dataset. Experimental results show that the proposed model can improve the accuracy of the two datasets by 9
READ FULL TEXT