FFHR: Fully and Flexible Hyperbolic Representation for Knowledge Graph Completion

02/07/2023
by   Wentao Shi, et al.
0

Learning hyperbolic embeddings for knowledge graph (KG) has gained increasing attention due to its superiority in capturing hierarchies. However, some important operations in hyperbolic space still lack good definitions, making existing methods unable to fully leverage the merits of hyperbolic space. Specifically, they suffer from two main limitations: 1) existing Graph Convolutional Network (GCN) methods in hyperbolic space rely on tangent space approximation, which would incur approximation error in representation learning, and 2) due to the lack of inner product operation definition in hyperbolic space, existing methods can only measure the plausibility of facts (links) with hyperbolic distance, which is difficult to capture complex data patterns. In this work, we contribute: 1) a Full Poincaré Multi-relational GCN that achieves graph information propagation in hyperbolic space without requiring any approximation, and 2) a hyperbolic generalization of Euclidean inner product that is beneficial to capture both hierarchical and complex patterns. On this basis, we further develop a Fully and Flexible Hyperbolic Representation framework (FFHR) that is able to transfer recent Euclidean-based advances to hyperbolic space. We demonstrate it by instantiating FFHR with four representative KGC methods. Extensive experiments on benchmark datasets validate the superiority of our FFHRs over their Euclidean counterparts as well as state-of-the-art hyperbolic embedding methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset