Filter stabilization for the mildly compressible Euler equations with application to atmosphere dynamics simulations

05/22/2023
by   Nicola Clinco, et al.
0

We present a filter stabilization technique for the mildly compressible Euler equations that relies on a linear or nonlinear indicator function to identify the regions of the domain where artificial viscosity is needed and determine its amount. For the realization of this technique, we adopt a three step algorithm called Evolve-Filter-Relax (EFR), which at every time step evolves the solution (i.e., solves the Euler equations on a coarse mesh), then filters the computed solution, and finally performs a relaxation step to combine the filtered and non-filtered solutions. We show that the EFR algorithm is equivalent to an eddy-viscosity model in Large Eddy Simulation. Three indicator functions are considered: a constant function (leading to a linear filter), a function proportional to the norm of the velocity gradient (recovering a Smagorinsky-like model), and a function based on approximate deconvolution operators. Through well-known benchmarks for atmospheric flow, we show that the deconvolution-based filter yields stable solutions that are much less dissipative than the linear filter and the Samgorinsky-like model and we highlight the efficiency of the EFR algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro