Finding (s,d)-Hypernetworks in F-Hypergraphs is NP-Hard

01/13/2022
by   Reynaldo Gil Pons, et al.
0

We consider the problem of computing an (s,d)-hypernetwork in an acyclic F-hypergraph. This is a fundamental computational problem arising in directed hypergraphs, and is a foundational step in tackling problems of reachability and redundancy. This problem was previously explored in the context of general directed hypergraphs (containing cycles), where it is NP-hard, and acyclic B-hypergraphs, where a linear time algorithm can be achieved. In a surprising contrast, we find that for acyclic F-hypergraphs the problem is NP-hard, which also implies the problem is hard in BF-hypergraphs. This is a striking complexity boundary given that F-hypergraphs and B-hypergraphs would at first seem to be symmetrical to one another. We provide the proof of complexity and explain why there is a fundamental asymmetry between the two classes of directed hypergraphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro