Fine-grained Retrieval Prompt Tuning

07/29/2022
by   Shijie Wang, et al.
8

Fine-grained object retrieval aims to learn discriminative representation to retrieve visually similar objects. However, existing top-performing works usually impose pairwise similarities on the semantic embedding spaces to continually fine-tune the entire model in limited-data regimes, thus resulting in easily converging to suboptimal solutions. In this paper, we develop Fine-grained Retrieval Prompt Tuning (FRPT), which steers a frozen pre-trained model to perform the fine-grained retrieval task from the perspectives of sample prompt and feature adaptation. Specifically, FRPT only needs to learn fewer parameters in the prompt and adaptation instead of fine-tuning the entire model, thus solving the convergence to suboptimal solutions caused by fine-tuning the entire model. Technically, as sample prompts, a structure perturbation prompt (SPP) is introduced to zoom and even exaggerate some pixels contributing to category prediction via a content-aware inhomogeneous sampling operation. In this way, SPP can make the fine-grained retrieval task aided by the perturbation prompts close to the solved task during the original pre-training. Besides, a category-specific awareness head is proposed and regarded as feature adaptation, which removes the species discrepancies in the features extracted by the pre-trained model using instance normalization, and thus makes the optimized features only include the discrepancies among subcategories. Extensive experiments demonstrate that our FRPT with fewer learnable parameters achieves the state-of-the-art performance on three widely-used fine-grained datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset