Finite-Time Capacity: Making Exceed-Shannon Possible?
Shannon-Hartley theorem can accurately calculate the channel capacity when the signal observation time is infinite. However, the calculation of finite-time capacity, which remains unknown, is essential for guiding the design of practical communication systems. In this paper, we investigate the capacity between two correlated Gaussian processes within a finite-time observation window. We first derive the finite-time capacity by providing a limit expression. Then we numerically compute the maximum transmission rate within a single finite-time window. We reveal that the number of bits transmitted per second within the finite-time window can exceed the classical Shannon capacity, which is called as the Exceed-Shannon phenomenon. Furthermore, we derive a finite-time capacity formula under a typical signal autocorrelation case by utilizing the Mercer expansion of trace class operators, and reveal the connection between the finite-time capacity problem and the operator theory. Finally, we analytically prove the existence of the Exceed-Shannon phenomenon in this typical case, and demonstrate the achievability of the finite-time capacity and its compatibility with the classical Shannon capacity.
READ FULL TEXT