First Order Locally Orderless Registration

08/10/2021
by   Sune Darkner, et al.
0

First Order Locally Orderless Registration (FLOR) is a scale-space framework for image density estimation used for defining image similarity, mainly for Image Registration. The Locally Orderless Registration framework was designed in principle to use zeroth-order information, providing image density estimates over three scales: image scale, intensity scale, and integration scale. We extend it to take first-order information into account and hint at higher-order information. We show how standard similarity measures extend into the framework. We study especially Sum of Squared Differences (SSD) and Normalized Cross-Correlation (NCC) but present the theory of how Normalised Mutual Information (NMI) can be included.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset