Fisher-Rao Metric, Geometry, and Complexity of Neural Networks

11/05/2017
by   Tengyuan Liang, et al.
0

We study the relationship between geometry and capacity measures for deep neural networks from an invariance viewpoint. We introduce a new notion of capacity --- the Fisher-Rao norm --- that possesses desirable invariance properties and is motivated by Information Geometry. We discover an analytical characterization of the new capacity measure, through which we establish norm-comparison inequalities and further show that the new measure serves as an umbrella for several existing norm-based complexity measures. We discuss upper bounds on the generalization error induced by the proposed measure. Extensive numerical experiments on CIFAR-10 support our theoretical findings. Our theoretical analysis rests on a key structural lemma about partial derivatives of multi-layer rectifier networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset