Fixed-Parameter Algorithms for the Weighted Max-Cut Problem on Embedded 1-Planar Graphs
We propose two fixed-parameter tractable algorithms for the weighted Max-Cut problem on embedded 1-planar graphs parameterized by the crossing number k of the given embedding. A graph is called 1-planar if it can be drawn in the plane with at most one crossing per edge. Our algorithms recursively reduce a 1-planar graph to at most 3^k planar graphs, using edge removal and node contraction. Our main algorithm then solves the Max-Cut problem for the planar graphs using the FCE-MaxCut introduced by Liers and Pardella [21]. In the case of non-negative edge weights, we suggest a variant that allows to solve the planar instances with any planar Max-Cut algorithm. We show that a maximum cut in the given 1-planar graph can be derived from the solutions for the planar graphs. Our algorithms compute a maximum cut in an embedded weighted 1-planar graph with n nodes and k edge crossings in time O(3^k n^3/2 log n).
READ FULL TEXT