Fixed-point cycles and EFX allocations

by   Benjamin Aram Berendsohn, et al.

We study edge-labelings of the complete bidirected graph ↔K_n with functions from the set [d] = {1, …, d} to itself. We call a cycle in ↔K_n a fixed-point cycle if composing the labels of its edges results in a map that has a fixed point, and we say that a labeling is fixed-point-free if no fixed-point cycle exists. For a given d, we ask for the largest value of n, denoted R_f(d), for which there exists a fixed-point-free labeling of ↔K_n. Determining R_f(d) for all d >0 is a natural Ramsey-type question, generalizing some well-studied zero-sum problems in extremal combinatorics. The problem was recently introduced by Chaudhury, Garg, Mehlhorn, Mehta, and Misra, who proved that d ≤ R_f(d) ≤ d^4+d and showed that the problem has close connections to EFX allocations, a central problem of fair allocation in social choice theory. In this paper we show the improved bound R_f(d) ≤ d^2 + o(1), yielding an efficient (1-ε)-EFX allocation with n agents and O(n^0.67) unallocated goods for any constant ε∈ (0,1/2]; this improves the bound of O(n^0.8) of Chaudhury, Garg, Mehlhorn, Mehta, and Misra. Additionally, we prove the stronger upper bound 2d-2, in the case where all edge-labels are permulations. A very special case of this problem, that of finding zero-sum cycles in digraphs whose edges are labeled with elements of ℤ_d, was recently considered by Alon and Krivelevich and by Mészáros and Steiner. Our result improves the bounds obtained by these authors and extends them to labelings from an arbitrary (not necessarily commutative) group, while also simplifying the proof.


page 1

page 2

page 3

page 4


Making an H-Free Graph k-Colorable

We study the following question: how few edges can we delete from any H-...

On Communication Complexity of Fixed Point Computation

Brouwer's fixed point theorem states that any continuous function from a...

Improving EFX Guarantees through Rainbow Cycle Number

We study the problem of fairly allocating a set of indivisible goods amo...

On system rollback and totalised fields

In system operations it is commonly assumed that arbitrary changes to a ...

Optimal Seeding and Self-Reproduction from a Mathematical Point of View

P. Kabamba developed generation theory as a tool for studying self-repro...

Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes on Trees

This paper considers synchronous discrete-time dynamical systems on grap...

Formal verification of a controller implementation in fixed-point arithmetic

For the implementations of controllers on digital processors, certain li...

Please sign up or login with your details

Forgot password? Click here to reset