Flexible model composition in machine learning and its implementation in MLJ

12/31/2020
by   Anthony D. Blaom, et al.
0

A graph-based protocol called `learning networks' which combine assorted machine learning models into meta-models is described. Learning networks are shown to overcome several limitations of model composition as implemented in the dominant machine learning platforms. After illustrating the protocol in simple examples, a concise syntax for specifying a learning network, implemented in the MLJ framework, is presented. Using the syntax, it is shown that learning networks are are sufficiently flexible to include Wolpert's model stacking, with out-of-sample predictions for the base learners.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro