Folding Polyiamonds into Octahedra

07/28/2022
by   Eva Stehr, et al.
0

We study polyiamonds (polygons arising from the triangular grid) that fold into the smallest yet unstudied platonic solid – the octahedron. We show a number of results. Firstly, we characterize foldable polyiamonds containing a hole of positive area, namely each but one polyiamond is foldable. Secondly, we show that a convex polyiamond folds into the octahedron if and only if it contains one of five polyiamonds. We thirdly present a sharp size bound: While there exist unfoldable polyiamonds of size 14, every polyiamond of size at least 15 folds into the octahedron. This clearly implies that one can test in polynomial time whether a given polyiamond folds into the octahedron. Lastly, we show that for any assignment of positive integers to the faces, there exist a polyiamond that folds into the octahedron such that the number of triangles covering a face is equal to the assigned number.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro