Foundations of MIMO Radar Detection Aided by Reconfigurable Intelligent Surfaces

05/19/2021
by   Stefano Buzzi, et al.
0

A reconfigurable intelligent surface (RIS) is a flat layer made of sub-wavelength-sized reflective elements capable of adding a tunable phase shift to the impinging electromagnetic wave. This paper considers the fundamental problem of target detection in a RIS-aided multiple-input multiple-output (MIMO) radar system. At first, a general signal model is introduced, which includes the possibility of using up to two RISs (one close to the transmitter and one close to the receiver) and subsumes both a mono-static and a bi-static radar configuration with or without a line-of-sight (LOS) view of the prospective target. Upon resorting to a generalized likelihood ratio test (GLRT), the design of the RIS phase shifts is formulated as the maximization of the probability of detection in the resolution cell under inspection for a fixed probability of false alarm, and suitable optimization algorithms are proposed and discussed. Both the theoretical and the numerical analysis clearly show the benefits, in terms of the signal-to-noise ratio (SNR) at the radar receiver, granted by the use of the RISs and shed light on the interplay among the key system parameters, such as the radar-RIS distance, the RIS size, and location of the prospective target. A major finding is that the RISs should be deployed in the near-field of the radar transmit/receive array. The paper is then concluded by discussing some open problems and foreseen applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset