Fragment-based t-SMILES for de novo molecular generation

01/04/2023
by   Juan-Ni Wu, et al.
0

At present, sequence-based and graph-based models are two of popular used molecular generative models. In this study, we introduce a general-purposed, fragment-based, hierarchical molecular representation named t-SMILES (tree-based SMILES) which describes molecules using a SMILES-type string obtained by doing breadth first search (BFS) on full binary molecular tree formed from fragmented molecular graph. The proposed t-SMILES combines the advantages of graph model paying more attention to molecular topology structure and language model possessing powerful learning ability. Experiments with feature tree rooted JTVAE and chemical reaction-based BRICS molecular decomposing algorithms using sequence-based autoregressive generation models on three popular molecule datasets including Zinc, QM9 and ChEMBL datasets indicate that t-SMILES based models significantly outperform previously proposed fragment-based models and being competitive with classical SMILES based and graph-based approaches. Most importantly, we proposed a new perspective for fragment based molecular designing. Hence, SOTA powerful sequence-based solutions could be easily applied for fragment based molecular tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro