Further Evidence Towards the Multiplicative 1-2-3 Conjecture

04/20/2020
by   Julien Bensmail, et al.
0

The product version of the 1-2-3 Conjecture, introduced by Skowronek-Kaziów in 2012, states that, a few obvious exceptions apart, all graphs can be 3-edge-labelled so that no two adjacent vertices get incident to the same product of labels. To date, this conjecture was mainly verified for complete graphs and 3-colourable graphs. As a strong support to the conjecture, it was also proved that all graphs admit such 4-labellings. In this work, we investigate how a recent proof of the multiset version of the 1-2-3 Conjecture by Vučković can be adapted to prove results on the product version. We prove that 4-chromatic graphs verify the product version of the 1-2-3 Conjecture. We also prove that for all graphs we can design 3-labellings that almost have the desired property. This leads to a new problem, that we solve for some graph classes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro