Gaussian process approach within a data-driven POD framework for fluid dynamics engineering problems

12/03/2020
by   Giulio Ortali, et al.
0

This work describes the implementation of a data-driven approach for the reduction of the complexity of parametrical partial differential equations (PDEs) employing Proper Orthogonal Decomposition (POD) and Gaussian Process Regression (GPR). This approach is applied initially to a literature case, the simulation of the stokes problems, and in the following to a real-world industrial problem, inside a shape optimization pipeline for a naval engineering problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset