GBRS: An Unified Model of Pawlak Rough Set and Neighborhood Rough Set

01/10/2022
by   Shuyin Xia, et al.
2

Pawlak rough set and neighborhood rough set are the two most common rough set theoretical models. Pawlawk can use equivalence classes to represent knowledge, but it cannot process continuous data; neighborhood rough sets can process continuous data, but it loses the ability of using equivalence classes to represent knowledge. To this end, this paper presents a granular-ball rough set based on the granlar-ball computing. The granular-ball rough set can simultaneously represent Pawlak rough sets, and the neighborhood rough set, so as to realize the unified representation of the two. This makes the granular-ball rough set not only can deal with continuous data, but also can use equivalence classes for knowledge representation. In addition, we propose an implementation algorithms of granular-ball rough sets. The experimental resuts on benchmark datasets demonstrate that, due to the combination of the robustness and adaptability of the granular-ball computing, the learning accuracy of the granular-ball rough set has been greatly improved compared with the Pawlak rough set and the traditional neighborhood rough set. The granular-ball rough set also outperforms nine popular or the state-of-the-art feature selection methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset