Generalized Minimal Distortion Principle for Blind Source Separation

09/11/2020
by   Robin Scheibler, et al.
0

We revisit the source image estimation problem from blind source separation (BSS). We generalize the traditional minimum distortion principle to maximum likelihood estimation with a model for the residual spectrograms. Because residual spectrograms typically contain other sources, we propose to use a mixed-norm model that lets us finely tune sparsity in time and frequency. We propose to carry out the minimization of the mixed-norm via majorization-minimization optimization, leading to an iteratively reweighted least-squares algorithm. The algorithm balances well efficiency and ease of implementation. We assess the performance of the proposed method as applied to two well-known determined BSS and one joint BSS-dereverberation algorithms. We find out that it is possible to tune the parameters to improve separation by up to 2 dB, with no increase in distortion, and at little computational cost. The method thus provides a cheap and easy way to boost the performance of blind source separation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset