Generalized Uncertainty Principles for Quantum Cryptography

02/02/2023
by   Randy Kuang, et al.
0

We know the classical public cryptographic algorithms are based on certain NP-hard problems such as the integer factoring in RSA and the discrete logarithm in Diffie-Hellman. They are going to be vulnerable with fault-tolerant quantum computers. We also know that the uncertainty principle for quantum bits or qubits such as quantum key distribution or QKD based on the quantum uncertainty principle offers the information theoretical security. The interesting implication with the paradigm shifts from classical computing to quantum computing is that the NP-hardness used for classical cryptography may shift to the uncertainty principles for quantum cryptography including quantum symmetric encryption, post-quantum cryptography, as well as quantum encryption in phase space for coherent optical communications. This paper would like to explore those so-called generalized uncertainty principles and explain what their implications are for quantum security. We identified three generalized uncertainty principles offering quantum security: non-commutability between permutation gates, non-commutability between the displacement and phase shift operators for coherent states, and the modular Diophantine Equation Problem in general linear algebra for post-quantum cryptography.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset