Generative Image Inpainting with Contextual Attention

01/24/2018
by   Jiahui Yu, et al.
0

Recent deep learning based approaches have shown promising results on image inpainting for the challenging task of filling in large missing regions in an image. These methods can generate visually plausible image structures and textures, but often create distorted structures or blurry textures inconsistent with surrounding areas. This is mainly due to ineffectiveness of convolutional neural networks in explicitly borrowing or copying information from distant spatial locations. On the other hand, traditional texture and patch synthesis approaches are particularly suitable when it needs to borrow textures from the surrounding regions. Motivated by these observations, we propose a new deep generative model-based approach which can not only synthesize novel image structures but also explicitly utilize surrounding image features as references during network training to make better predictions. The model is a feed-forward, fully convolutional neural network which can process images with multiple holes at arbitrary locations and with variable sizes during the test time. Experiments on multiple datasets including faces, textures and natural images demonstrate that the proposed approach generates higher-quality inpainting results than existing ones. Code and trained models will be released.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset