Generic identification of binary-valued hidden Markov processes

01/19/2011
by   Alexander Schönhuth, et al.
0

The generic identification problem is to decide whether a stochastic process (X_t) is a hidden Markov process and if yes to infer its parameters for all but a subset of parametrizations that form a lower-dimensional subvariety in parameter space. Partial answers so far available depend on extra assumptions on the processes, which are usually centered around stationarity. Here we present a general solution for binary-valued hidden Markov processes. Our approach is rooted in algebraic statistics hence it is geometric in nature. We find that the algebraic varieties associated with the probability distributions of binary-valued hidden Markov processes are zero sets of determinantal equations which draws a connection to well-studied objects from algebra. As a consequence, our solution allows for algorithmic implementation based on elementary (linear) algebraic routines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro