Generic nonadditivity of quantum capacity in simple channels

02/16/2022
by   Felix Leditzky, et al.
0

Determining capacities of quantum channels is a fundamental question in quantum information theory. Despite having rigorous coding theorems quantifying the flow of information across quantum channels, their capacities are poorly understood due to super-additivity effects. Studying these phenomena is important for deepening our understanding of quantum information, yet simple and clean examples of super-additive channels are scarce. Here we study a simple family of qutrit channels called the platypus channel, and show that it exhibits super-additivity of coherent information when used jointly with a variety of qubit channels. A higher-dimensional variant of the platypus channel displays super-additivity of quantum capacity together with an erasure channel. Subject to the "spin-alignment conjecture" introduced in a companion paper, our results on super-additivity of quantum capacity extend to lower-dimensional channels as well as larger parameter ranges. In particular, super-additivity occurs between two weakly additive channels each with large capacity on their own, in stark contrast to previous results. Remarkably, a single, novel transmission strategy achieves super-additivity in all examples. Our results show that super-additivity is much more prevalent than previously thought. It can occur across a wide variety of channels, even when both participating channels have large quantum capacity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro