Global Transformer U-Nets for Label-Free Prediction of Fluorescence Images

07/01/2019
by   YI LIU, et al.
0

Visualizing the details of different cellular structures is of great importance to elucidate cellular functions. However, it is challenging to obtain high quality images of different structures directly due to complex cellular environments. Fluorescence microscopy is a popular technique to label different structures but has several drawbacks. In particular, labeling is time consuming and may affect cell morphology, and simultaneous labels are inherently limited. This raises the need of building computational models to learn relationships between unlabeled and labeled fluorescence images, and to infer fluorescent labels of other unlabeled fluorescence images. We propose to develop a novel deep model for fluorescence image prediction. We first propose a novel network layer, known as the global transformer layer, that fuses global information from inputs effectively. The proposed global transformer layer can generate outputs with arbitrary dimensions, and can be employed for all the regular, down-sampling, and up-sampling operators. We then incorporate our proposed global transformer layers and dense blocks to build an U-Net like network. We believe such a design can promote feature reusing between layers. In addition, we propose a multi-scale input strategy to encourage networks to capture features at different scales. We conduct evaluations across various label-free prediction tasks to demonstrate the effectiveness of our approach. Both quantitative and qualitative results show that our method outperforms the state-of-the-art approach significantly. It is also shown that our proposed global transformer layer is useful to improve the fluorescence image prediction results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset