GPU accelerated RBF-FD solution of Poisson's equation
The Radial Basis Function-generated finite differences became a popular variant of local meshless strong form methods due to its robustness regarding the position of nodes and its controllable order of accuracy. In this paper, we present a GPU accelerated numerical solution of Poisson's equation on scattered nodes in 2D for orders from 2 up to 6. We specifically study the effect of using different orders on GPU acceleration efficiency.
READ FULL TEXT