Grammars and reinforcement learning for molecule optimization

11/27/2018
by   Egor Kraev, et al.
0

We seek to automate the design of molecules based on specific chemical properties. Our primary contributions are a simpler method for generating SMILES strings guaranteed to be chemically valid, using a combination of a new context-free grammar for SMILES and additional masking logic; and casting the molecular property optimization as a reinforcement learning problem, specifically best-of-batch policy gradient applied to a Transformer model architecture. This approach uses substantially fewer model steps per atom than earlier approaches, thus enabling generation of larger molecules, and beats previous state-of-the art baselines by a significant margin. Applying reinforcement learning to a combination of a custom context-free grammar with additional masking to enforce non-local constraints is applicable to any optimization of a graph structure under a mixture of local and nonlocal constraints.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro