Graph Attention Network Based Single-Pixel Compressive Direction of Arrival Estimation
In this paper, we present a single-pixel compressive direction of arrival (DoA) estimation technique leveraging a graph attention network (GAT) based deep-learning framework. The physical layer compression is achieved using a coded-aperture technique, probing the spectrum of far-field sources incident on the aperture using a set of spatio-temporally incoherent modes. This information is then encoded and compressed into the channel of the coded-aperture. The coded-aperture based receiver exhibits a single-channel, replacing the conventional multichannel raster scan based solutions for DoA estimation. The GAT network enables the compressive DoA estimation framework to learn the DoA information directly from the measurements acquired using the coded-aperture. This step eliminates the need for an additional reconstruction step and significantly simplifies the processing layer to obtain the DoA estimate. We show that the presented GAT integrated single-pixel radar framework can retrieve high fidelity DoA information even under relatively low signal-to-noise ratio (SNR) levels.
READ FULL TEXT