Graph-Based Methods for Discrete Choice

by   Kiran Tomlinson, et al.

Choices made by individuals have widespread impacts–for instance, people choose between political candidates to vote for, between social media posts to share, and between brands to purchase–moreover, data on these choices are increasingly abundant. Discrete choice models are a key tool for learning individual preferences from such data. Additionally, social factors like conformity and contagion influence individual choice. Existing methods for incorporating these factors into choice models do not account for the entire social network and require hand-crafted features. To overcome these limitations, we use graph learning to study choice in networked contexts. We identify three ways in which graph learning techniques can be used for discrete choice: learning chooser representations, regularizing choice model parameters, and directly constructing predictions from a network. We design methods in each category and test them on real-world choice datasets, including county-level 2016 US election results and Android app installation and usage data. We show that incorporating social network structure can improve the predictions of the standard econometric choice model, the multinomial logit. We provide evidence that app installations are influenced by social context, but we find no such effect on app usage among the same participants, which instead is habit-driven. In the election data, we highlight the additional insights a discrete choice framework provides over classification or regression, the typical approaches. On synthetic data, we demonstrate the sample complexity benefit of using social information in choice models.


Learning Interpretable Feature Context Effects in Discrete Choice

The outcomes of elections, product sales, and the structure of social co...

Choice Set Confounding in Discrete Choice

Standard methods in preference learning involve estimating the parameter...

Choice Set Optimization Under Discrete Choice Models of Group Decisions

The way that people make choices or exhibit preferences can be strongly ...

Deep Learning for Choice Modeling

Choice modeling has been a central topic in the study of individual pref...

Mixed Logit Models and Network Formation

The study of network formation is pervasive in economics, sociology, and...

Social Learning and Diffusion of Pervasive Goods: An Empirical Study of an African App Store

In this study, the authors develop a structural model that combines a ma...

Attributes affecting user decision to adopt a Virtual Private Network (VPN) app

A Virtual Private Network (VPN) helps to mitigate security and privacy r...

Please sign up or login with your details

Forgot password? Click here to reset