Graph Neural Networks for Decentralized Multi-Robot Path Planning
Efficient and collision-free navigation in multi-robot systems is fundamental to advancing mobility. Scenarios where the robots are restricted in observation and communication range call for decentralized solutions, whereby robots execute localized planning policies. From the point of view of an individual robot, however, its local decision-making system is incomplete, since other agents' unobservable states affect future values. The manner in which information is shared is crucial to the system's performance, yet is not well addressed by current approaches. To address these challenges, we propose a combined architecture, with the goal of learning a decentralized sequential action policy that yields efficient path plans for all robots. Our framework is composed of a convolutional neural network (CNN) that extracts adequate features from local observations, and a graph neural network (GNN) that communicates these features among robots. We train the model to imitate an expert algorithm, and use the resulting model online in decentralized planning involving only local communication. We evaluate our method in simulations involving teams of robots in cluttered workspaces. We measure the success rates and sum of costs over the planned paths. The results show a performance close to that of our expert algorithm, demonstrating the validity of our approach. In particular, we show our model's capability to generalize to previously unseen cases (involving larger environments and larger robot teams).
READ FULL TEXT