Greedy inference with layers of lazy maps

05/31/2019
by   Daniele Bigoni, et al.
0

We propose a framework for the greedy approximation of high-dimensional Bayesian inference problems, through the composition of multiple low-dimensional transport maps or flows. Our framework operates recursively on a sequence of “residual” distributions, given by pulling back the posterior through the previously computed transport maps. The action of each map is confined to a low-dimensional subspace that we identify by minimizing an error bound. At each step, our approach thus identifies (i) a relevant subspace of the residual distribution, and (ii) a low-dimensional transformation between a restriction of the residual onto this subspace and a standard Gaussian. We prove weak convergence of the approach to the posterior distribution, and we demonstrate the algorithm on a range of challenging inference problems in differential equations and spatial statistics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro