Hands-on Guidance for Distilling Object Detectors

03/26/2021
by   Yangyang Qin, et al.
0

Knowledge distillation can lead to deploy-friendly networks against the plagued computational complexity problem, but previous methods neglect the feature hierarchy in detectors. Motivated by this, we propose a general framework for detection distillation. Our method, called Hands-on Guidance Distillation, distills the latent knowledge of all stage features for imposing more comprehensive supervision, and focuses on the essence simultaneously for promoting more intense knowledge absorption. Specifically, a series of novel mechanisms are designed elaborately, including correspondence establishment for consistency, hands-on imitation loss measure and re-weighted optimization from both micro and macro perspectives. We conduct extensive evaluations with different distillation configurations over VOC and COCO datasets, which show better performance on accuracy and speed trade-offs. Meanwhile, feasibility experiments on different structural networks further prove the robustness of our HGD.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro