HCDG: A Hierarchical Consistency Framework for Domain Generalization on Medical Image Segmentation

09/13/2021
by   Yijun Yang, et al.
0

Modern deep neural networks struggle to transfer knowledge and generalize across domains when deploying to real-world applications. Domain generalization (DG) aims to learn a universal representation from multiple source domains to improve the network generalization ability on unseen target domains. Previous DG methods mostly focus on the data-level consistency scheme to advance the generalization capability of deep networks, without considering the synergistic regularization of different consistency schemes. In this paper, we present a novel Hierarchical Consistency framework for Domain Generalization (HCDG) by ensembling Extrinsic Consistency and Intrinsic Consistency. Particularly, for Extrinsic Consistency, we leverage the knowledge across multiple source domains to enforce data-level consistency. Also, we design a novel Amplitude Gaussian-mixing strategy for Fourier-based data augmentation to enhance such consistency. For Intrinsic Consistency, we perform task-level consistency for the same instance under the dual-task form. We evaluate the proposed HCDG framework on two medical image segmentation tasks, i.e., optic cup/disc segmentation on fundus images and prostate MRI segmentation. Extensive experimental results manifest the effectiveness and versatility of our HCDG framework. Code will be available once accept.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset