Hierarchical Linearly-Solvable Markov Decision Problems

03/10/2016
by   Anders Jonsson, et al.
0

We present a hierarchical reinforcement learning framework that formulates each task in the hierarchy as a special type of Markov decision process for which the Bellman equation is linear and has analytical solution. Problems of this type, called linearly-solvable MDPs (LMDPs) have interesting properties that can be exploited in a hierarchical setting, such as efficient learning of the optimal value function or task compositionality. The proposed hierarchical approach can also be seen as a novel alternative to solving LMDPs with large state spaces. We derive a hierarchical version of the so-called Z-learning algorithm that learns different tasks simultaneously and show empirically that it significantly outperforms the state-of-the-art learning methods in two classical hierarchical reinforcement learning domains: the taxi domain and an autonomous guided vehicle task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset