Hierarchical Reinforcement Learning Based Traffic Steering in Multi-RAT 5G Deployments

01/18/2023
by   Md Arafat Habib, et al.
0

In 5G non-standalone mode, an intelligent traffic steering mechanism can vastly aid in ensuring smooth user experience by selecting the best radio access technology (RAT) from a multi-RAT environment for a specific traffic flow. In this paper, we propose a novel load-aware traffic steering algorithm based on hierarchical reinforcement learning (HRL) while satisfying diverse QoS requirements of different traffic types. HRL can significantly increase system performance using a bi-level architecture having a meta-controller and a controller. In our proposed method, the meta-controller provides an appropriate threshold for load balancing, while the controller performs traffic admission to an appropriate RAT in the lower level. Simulation results show that HRL outperforms a Deep Q-Learning (DQN) and a threshold-based heuristic baseline with 8.49 network delay, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro