High Temperature Structure Detection in Ferromagnets

09/21/2018
by   Yuan Cao, et al.
0

This paper studies structure detection problems in high temperature ferromagnetic (positive interaction only) Ising models. The goal is to distinguish whether the underlying graph is empty, i.e., the model consists of independent Rademacher variables, versus the alternative that the underlying graph contains a subgraph of a certain structure. We give matching upper and lower minimax bounds under which testing this problem is possible/impossible respectively. Our results reveal that a key quantity called graph arboricity drives the testability of the problem. On the computational front, under a conjecture of the computational hardness of sparse principal component analysis, we prove that, unless the signal is strong enough, there are no polynomial time linear tests on the sample covariance matrix which are capable of testing this problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset