Highlighting Named Entities in Input for Auto-Formulation of Optimization Problems

12/26/2022
by   Neeraj Gangwar, et al.
0

Operations research deals with modeling and solving real-world problems as mathematical optimization problems. While solving mathematical systems is accomplished by analytical software, formulating a problem as a set of mathematical operations has been typically done manually by domain experts. However, recent machine learning models have shown promise in converting textual problem descriptions to corresponding mathematical formulations. In this paper, we present an approach that converts linear programming word problems into meaning representations that are structured and can be used by optimization solvers. Our approach uses the named entity-based enrichment to augment the input and achieves state-of-the-art accuracy, winning the second task of the NL4Opt competition (https://nl4opt.github.io).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro