Hodge decomposition and the Shapley value of a cooperative game

09/25/2017
by   Ari Stern, et al.
0

We show that a cooperative game may be decomposed into a sum of component games, one for each player, using the combinatorial Hodge decomposition on a graph. This decomposition is shown to satisfy certain efficiency, null-player, symmetry, and linearity properties. Consequently, we obtain a new characterization of the classical Shapley value as the value of the grand coalition in each player's component game. We also relate this decomposition to a least-squares problem involving inessential games (in a similar spirit to previous work on least-squares and minimum-norm solution concepts) and to the graph Laplacian. Finally, we generalize this approach to games with weights and/or constraints on coalition formation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro