How do exponential size solutions arise in semidefinite programming?

02/26/2021
by   Gábor Pataki, et al.
0

As a classic example of Khachiyan shows, some semidefinite programs (SDPs) have solutions whose size – the number of bits necessary to describe them – is exponential in the size of the input. Exponential size solutions are the main obstacle to solve a long standing open problem: can we decide feasibility of SDPs in polynomial time? We prove that large solutions are actually quite common in SDPs: a linear change of variables transforms every strictly feasible SDP into a Khachiyan type SDP, in which the leading variables are large. As to "how large", that depends on the singularity degree of a dual problem. Further, we present some SDPs in which large solutions appear naturally, without any change of variables. We also partially answer the question: how do we represent such large solutions in polynomial space?

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro