How to gamble with non-stationary X-armed bandits and have no regrets

08/20/2019
by   Vakeriy Avanesov, et al.
0

In X-armed bandit problem an agent sequentially interacts with environment which yields a reward based on the vector input the agent provides. The agent's goal is to maximise the sum of these rewards across some number of time steps. The problem and its variations have been a subject of numerous studies, suggesting sub-linear and some times optimal strategies. The given paper introduces a novel variation of the problem. We consider an environment, which can abruptly change its behaviour an unknown number of times. To that end we propose a novel strategy and prove it attains sub-linear cumulative regret. Moreover, in case of highly smooth relation between an action and the corresponding reward, the method is nearly optimal. The theoretical result are supported by experimental study.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro