HPCGen: Hierarchical K-Means Clustering and Level Based Principal Components for Scan Path Genaration

01/19/2022
by   Wolfgang Fuhl, et al.
0

In this paper, we present a new approach for decomposing scan paths and its utility for generating new scan paths. For this purpose, we use the K-Means clustering procedure to the raw gaze data and subsequently iteratively to find more clusters in the found clusters. The found clusters are grouped for each level in the hierarchy, and the most important principal components are computed from the data contained in them. Using this tree hierarchy and the principal components, new scan paths can be generated that match the human behavior of the original data. We show that this generated data is very useful for generating new data for scan path classification but can also be used to generate fake scan paths.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset