I Know What You Are Searching For: Code Snippet Recommendation from Stack Overflow Posts

10/28/2022
by   Zhipeng Gao, et al.
0

Stack Overflow has been heavily used by software developers to seek programming-related information. More and more developers use Community Question and Answer forums, such as Stack Overflow, to search for code examples of how to accomplish a certain coding task. This is often considered to be more efficient than working from source documentation, tutorials or full worked examples. However, due to the complexity of these online Question and Answer forums and the very large volume of information they contain, developers can be overwhelmed by the sheer volume of available information. This makes it hard to find and/or even be aware of the most relevant code examples to meet their needs. To alleviate this issue, in this work we present a query-driven code recommendation tool, named Que2Code, that identifies the best code snippets for a user query from Stack Overflow posts. Our approach has two main stages: (i) semantically-equivalent question retrieval and (ii) best code snippet recommendation. To evaluate the performance of our proposed model, we conduct a large scale experiment to evaluate the effectiveness of the semantically-equivalent question retrieval task and best code snippet recommendation task separately on Python and Java datasets in Stack Overflow. We also perform a human study to measure how real-world developers perceive the results generated by our model. Both the automatic and human evaluation results demonstrate the promising performance of our model, and we have released our code and data to assist other researchers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset