Identifiability of Graphs with Small Color Classes by the Weisfeiler-Leman Algorithm

07/05/2019
by   Frank Fuhlbrück, et al.
0

As it is well known, the isomorphism problem for vertex-colored graphs with color multiplicity at most 3 is solvable by the classical 2-dimensional Weisfeiler-Leman algorithm (2-WL). On the other hand, the prominent Cai-Fürer-Immerman construction shows that even the multidimensional version of the algorithm does not suffice for graphs with color multiplicity 4. We give an efficient decision procedure that, given a graph G of color multiplicity 4, recognizes whether or not G is identifiable by 2-WL, that is, whether or not 2-WL distinguishes G from any non-isomorphic graph. In fact, we solve the much more general problem of recognizing whether or not a given coherent configuration of maximum fiber size 4 is separable. This extends our recognition algorithm to graphs of color multiplicity 4 with directed and colored edges. Our decision procedure is based on an explicit description of the class of graphs with color multiplicity 4 that are not identifiable by 2-WL. The Cai-Fürer-Immerman graphs of color multiplicity 4 appear here as a natural subclass, which demonstrates that the Cai-Fürer-Immerman construction is not ad hoc. Our classification reveals also other types of graphs that are hard for 2-WL. One of them arises from patterns known as (n_3)-configurations in incidence geometry.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset