Image Completion on CIFAR-10

10/07/2018
by   Mason Swofford, et al.
0

This project performed image completion on CIFAR-10, a dataset of 60,000 32x32 RGB images, using three different neural network architectures: fully convolutional networks, convolutional networks with fully connected layers, and encoder-decoder convolutional networks. The highest performing model was a deep fully convolutional network, which was able to achieve a mean squared error of .015 when comparing the original image pixel values with the predicted pixel values. As well, this network was able to output in-painted images which appeared real to the human eye.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro