Improved approximation algorithms for hitting 3-vertex paths

08/30/2018
by   Samuel Fiorini, et al.
0

We study the problem of deleting a minimum cost set of vertices from a given vertex-weighted graph in such a way that the resulting graph has no induced path on three vertices. This problem is often called cluster vertex deletion in the literature and admits a straightforward 3-approximation algorithm since it is a special case of the vertex cover problem on a 3-uniform hypergraph. Recently, You, Wang, and Cao described an efficient 5/2-approximation algorithm for the unweighted version of the problem. Our main result is a 9/4-approximation algorithm for arbitrary weights, using the local ratio technique. We further conjecture that the problem admits a 2-approximation algorithm and give some support for the conjecture. This is in sharp contrast with the fact that the similar problem of deleting vertices to eliminate all triangles in a graph is known to be UGC-hard to approximate to within a ratio better than 3, as proved by Guruswami and Lee.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro