Improving living biomass C-stock loss estimates by combining optical satellite, airborne laser scanning, and NFI data

12/14/2020
by   Johannes Breidenbach, et al.
0

Policy measures and management decisions aiming at enhancing the role of forests in mitigating climate-change require reliable estimates of C-stock dynamics in greenhouse gas inventories (GHGIs). Aim of this study was to assemble design-based estimators to provide estimates relevant for GHGIs using national forest inventory (NFI) data. We improve basic expansion (BE) estimates of living-biomass C-stock loss using field-data only, by leveraging with remotely-sensed auxiliary data in model-assisted (MA) estimates. Our case studies from Norway, Sweden, Denmark, and Latvia covered an area of >70 Mha. Landsat-based Forest Cover Loss (FCL) and one-time wall-to-wall airborne laser scanning (ALS) data served as auxiliary data. ALS provided information on the C-stock before a potential disturbance indicated by FCL. The use of FCL in MA estimators resulted in considerable efficiency gains which in most cases were further increased by using ALS in addition. A doubling of efficiency was possible for national estimates and even larger efficiencies were observed at the sub-national level. Average annual estimates were considerably more precise than pooled estimates using NFI data from all years at once. The combination of remotely-sensed with NFI field data yields reliable estimates which is not necessarily the case when using remotely-sensed data without reference observations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro