Improving Machine Reading Comprehension with General Reading Strategies

10/31/2018
by   Kai Sun, et al.
0

Reading strategies have been shown to improve comprehension levels, especially for readers lacking adequate prior knowledge. Just as the process of knowledge accumulation is time-consuming for human readers, it is resource-demanding to impart rich general domain knowledge into a language model via pre-training (Radford et al., 2018; Devlin et al., 2018). Inspired by reading strategies identified in cognitive science, and given limited computational resources - just a pre-trained model and a fixed number of training instances - we therefore propose three simple domain-independent strategies aimed to improve non-extractive machine reading comprehension (MRC): (i) BACK AND FORTH READING that considers both the original and reverse order of an input sequence, (ii) HIGHLIGHTING, which adds a trainable embedding to the text embedding of tokens that are relevant to the question and candidate answers, and (iii) SELF-ASSESSMENT that generates practice questions and candidate answers directly from the text in an unsupervised manner. By fine-tuning a pre-trained language model (Radford et al., 2018) with our proposed strategies on the largest existing general domain multiple-choice MRC dataset RACE, we obtain a 5.8 best result achieved by the same pre-trained model fine-tuned on RACE without the use of strategies. We further fine-tune the resulting model on a target task, leading to new state-of-the-art results on six representative non-extractive MRC datasets from different domains (i.e., ARC, OpenBookQA, MCTest, MultiRC, SemEval-2018, and ROCStories). These results indicate the effectiveness of the proposed strategies and the versatility and general applicability of our fine-tuned models that incorporate these strategies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset