Improving Texture Categorization with Biologically Inspired Filtering
Within the domain of texture classification, a lot of effort has been spent on local descriptors, leading to many powerful algorithms. However, preprocessing techniques have received much less attention despite their important potential for improving the overall classification performance. We address this question by proposing a novel, simple, yet very powerful biologically-inspired filtering (BF) which simulates the performance of human retina. In the proposed approach, given a texture image, after applying a DoG filter to detect the "edges", we first split the filtered image into two "maps" alongside the sides of its edges. The feature extraction step is then carried out on the two "maps" instead of the input image. Our algorithm has several advantages such as simplicity, robustness to illumination and noise, and discriminative power. Experimental results on three large texture databases show that with an extremely low computational cost, the proposed method improves significantly the performance of many texture classification systems, notably in noisy environments. The source codes of the proposed algorithm can be downloaded from https://sites.google.com/site/nsonvu/code.
READ FULL TEXT